How Everyday Substances and Habits Can Dissolve Your Teeth Away

If your mouth hosts biofilms of certain bacteria, especially Streptococcus mutans, who are feeding off sugars, the teeth will be in constant contact with acid. Such bacteria even store polysaccharides and continue to lower the pH of their environment, long after food has been swallowed. If this persists, teeth could eventually decay. But are there other sources of acids that could also inflict damage?

acid erosion from untreated acid reflux disease. Image from
Acid erosion from untreated acid reflux disease. Image from

Juice, soft drinks and vinegar-rich foods easily come to mind. Gastric juice from either bulimia or a gastro-disorder can also take its toll. Less familiar hazards include professional wine tasting, which involves keeping wine in the mouth for up to a minute, dozens of times a day. Frequent swimming in pools that are not pH-balanced also leads to tooth decay. Stabilizers in chlorine “pucks” are acidic, and the direct application of chlorine forms not only hypochlorite but hydrochloric acid.

All of this begs the question, how exactly does acid damage teeth? And why are there individual variations?

At the critical pH, a solution is just saturated with respect to one of the minerals in enamel. If the solution’s acid- level is above the critical pH, then things are safe for teeth: the solution is supersaturated relative to that mineral, and more of it will tend to precipitate out. But if the solution’s pH is below the critical value, then the solution is unsaturated, and teeth will start to dissolve.

The mineral we’ve referred to is calcium hydroxyapatite, one of the enamel’s components. In aqueous solution it creates the following equilibrium:

Ca10(PO4)6(OH)2(s) =  10 Ca2+(aq) + 6 PO4 3–(aq)  + 2 OH (aq)

Normally, the mineral is highly insoluble; its Ksp is extremely small, in the order of 10-117.  But of course the solubility of enamel can increase if hydroxide ion is consumed, hampering the reverse reaction and favoring the forward reaction. (LeChatelier never rests, not even while you eat!) Phosphate’s concentration also decreases with lower pH as the presence of H+ creates H3PO4, H2PO4 , HPO4 2–  in saliva. If phosphate levels decrease, the forward reaction is favored again, increasing the solubility of hydroxyapatite. For these two reasons, acidic conditions lead to tooth erosion.

The critical pH is around 5.5, but it’s not a fixed value and can vary from one individual to the next.

Here’s why:

  • The amount of fluoroapatite, another mineral present in enamel, reduces the critical pH because fluoroapatite (Ca5(PO4)3F ) is free of hydroxide. Fluoridating teeth protects teeth against acid-erosion by displacing hydroxide with fluoride ion.
  • Impurities in enamel such as carbonate and fluoride affect enamel solubility and those ions vary in different people. If concentrations of phosphate and calcium ions in an individual’s saliva are unusually low, the critical pH may increase by a factor of 10 to 6.5.


  1. What Is the Critical pH and Why Does a Tooth Dissolve in Acid? • Colin Dawes, BSc, BDS, PhD •

  1. Microbiology of Dental Decay and Periodontal Disease

  1. Rapid and Severe Tooth Erosion from Swimming in an Improperly Chlorinated Pool: Case Report Colin Dawes, BSc, BDS, PhD; Carey L. Boroditsky, DMD May 2008, Vol. 74, No. 4
  1. The diagnosis and control of extrinsic acid erosion of tooth substance

Kevin H-K. Yip, BDS, MEd, MMedSc, PhD | Roger J. Smales, MDS, DDSc | John A. Kaidonis, BDS, BScD, PhD 2002


Up ↑