Pourquoi j’aime le Québec

p1120348My wife and I lived and worked in Hawaii for a year— living there on a short-term basis was enjoyable, but the decision to move back to Québec was a wise one.

Here are reasons why I find Québec endearing .

  1. Deep-rooted conflicts have been settled here rather peacefully. In the early 20th century, Québec and Ontario had become the most urbanized of Canadian provinces. But the government had not prevented industry from being exploitative. In Québec the majority of people were (and still are) French, but enterprises were owned and managed by English Canadians and by Americans. Despite the urbanization, during Premier Duplessis 18-year tenure, he did his best to keep the province agrarian, Catholic and conservatively-minded, denying his French citizens a chance to participate in commerce. Meanwhile his administration and the Catholic Church were responsible for much corruption and abuse.In 1960, a year after his death, a new government led the province into the Quiet Revolution, which ousted the Church from social, health and educational infrastructure.  Almost overnight, as echoed by Rémy in a Denys Arcand`s movie, Les Invasions barbarespeople stopped going to church. The Lesage government nationalized hydroelectric power and financed larger projects. These supplied more power to cities that grew as more people left their farms.
  1. In Québec, the crime rate is below the national average. The vast majority don`t own guns. Even though most francophones still don`t attend Sunday mass, and many just raise families in common-law arrangements, Québecers are civil, if not just plain nice to each other, and no less moral than anyone else .map
  1. Thanks to our supply of a relatively green energy source, we have the lowest carbon footprint per capita in the country. In Gaspé most of the power is supplied by wind turbines. We are also one of the few places to have a cap and trade program for greenhouse gas emissions.

    co2emissions
    data: Environment Canada https://www.ec.gc.ca/indicateurs-indicators/default.asp?lang=en&n=18F3BB9C-1
  1. Racial and religious discrimination is relatively low. A few years ago, when the Parti Québecois political party tried to exploit a minority-sentiment of intolerance, voters saw through the politicians’ attempt to manipulate them , and Marois’s party was ousted from power. A 1976 language law that made French the official language initially alienated the anglophone community, but again the conflict was resolved peacefully. Some panicked and left the province. But the English who remained made more of an effort to learn French, and in cities at least, francophones reciprocated.
  1. Our citizens are heavily taxed, but taxes fund Medicare, good social programs and an excellent CEGEP system. Many of our southern neighbours don`t understand social democracy; it only takes plain common sense to tell John Steinbeck apart from Joseph Stalin. University tuition rates, thanks to the federal government`s transfer payments, are also among the lowest on the continent. Although the bureaucracy in both health and education is excessive and large city-hospitals are crowded,  these problems could easily be fixed by replacing most administrative retirees with more good doctors, nurses and quality-teachers.
  1. Its physical geography is beautiful. Many of our city folks don`t realize it. Instead of travelling abroad, we could vacation more often within our own province. It would lower our carbon footprint and stimulate the provincial economy outside urban centres.  I will let my pictures speak for themselves.

Two Offbeat Questions About Greenhouse Gases

In science, something fruitful can arise from innocent or atypical questions.  One of many examples of this was a recent query in Quora, ” Can chlorine be potentially a greenhouse gas? Why or why not?

Here’s what I wrote, but I’ve since added a little more detail.

Short answer , no.  🙂

Now here’s why….

An infrared spectrum is used to check if specific molecules are good absorbers of infrared energy, which qualifies them as “greenhouse gases”. Some chlorine-containing gases like CFCs fall into that category, but diatomic chlorine(Cl2) or monoatomic chlorine(Cl) do not. How come?

In order for molecular vibrations to absorb IR energy, the vibrational motions along the bond must change the dipole moment CO2IRof the molecule. A dipole occurs when pulling forces within a molecule do not cancel out. Why are there forces in the first place? These exist because of the differences in “greediness” for electrons between different atoms. So Cl by itself has no bonds so it can’t even vibrate. Diatomic chlorine does not meet the criteria either because, like O2 and N2 in air, it has the same atom pulling on each side of the bond, and equally important, any type of stretching or bending will not cause or lead to a change in net force between the bonded atoms.
The neat and thing about CO2 is that it doesn’t have a permanent dipole moment, but it can experience a net force during an asymmetric stretch. This happens when one oxygen gets squished towards the carbon in the middle of the molecule while the other oxygen atom stretches away, leading to a change in dipole. That’s what makes carbon dioxide a greenhouse gas. If the oxygen atoms each pull away from the carbon, the net force will still equal zero. With no net change, the symmetric stretch cannot intensify and cannot absorb infrared energy.

co2 asymm
CO2’s asymmetric stretch, which leads to strong absorption of infrared Source for 3 gifs.
co2 symm
This symmetric stretch cannot intensify with incoming infrared red absorption.

There is also some absorption in another part of the infrared spectrum, although not as intense but still due to a change in dipole. It happens when the CO2 molecule bends.

co2 bend
A bending vibration of the CO2 molecule. The change in dipole occurs, implying that it can intensify by absorbing infrared.

At the rish2o symmk of belaboring the idea, let’s point look at the H2O molecule, a strong and more abundant greenhouse gas than CO2.  The latter has a linear shape. Due to  water’s angular shape, water already has an overall dipole.  Even with a symmetric stretch a change in dipole will result. Specifically, the movement shown increases the net pull of oxygen. As a result such a stretch can also be amplified when it absorbs infrared.

By the way, why don’t we focus any attention on our emissions of water vapor? Simplistically, one might attribute it to relative numbers. Air on average is about 2% H2O gas. (The percentage breakdowns for atmospheric composition that are normally given are for dry air.) So although the combustion of petroleum and natural gas emits H2O, relative to CO2, the water produced causes very little change in the overall percentage of water vapor. Moreover, coal, which produces the most CO2 per kWh, produces little water when burnt because hydrogen only makes up about 5% of coal.  There is a net movement of water from land to ocean of 37 trillion tons of water per year. Of this total, about 12 trillion tons of water is in the air at any one time because water vapor only stays in the air for an average of 10 days. That’s 12 000 gigatons, of which we add about 3 to 5 gigatons(Gton) annually, a change of 0.03%. In contrast, we add 9 Gtons of carbon dioxide annually. After an increased withdrawal by oceans and land, there is a net annual  input of 4 Gtons to a pool of 840 Gtons, or a 0.5% increase, more than 15 times bigger than that of water.

But far more importantly,  in the real world’s dynamics, CO2 and other non-H2O greenhouse gases, are the major limiting factor in the greenhouse effect.

Without non-condensing greenhouse gases[such as CO2], water vapor and clouds would be unable to provide the feedback mechanisms that amplify the greenhouse effect.

488311main_feedback-forcings

Other references for the above research:

Andrew Lacis. NASA Goddard Institute Space Studies. CO2: The Thermostat that Controls Earth’s Temperature 2010

Lacis, Hansen and al. NASA GISS  The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change 2013

….

I encountered the second question on a NASA blog. It’s based on a common misconception, but again it shows how even someone without the erroneous idea can still benefit from reading a thorough answer, such as the one given below by Rebecca Lindsey. The ozone hole and global warming are separate problems, but some of the minor connections between the two are rarely discussed in big media.

Are the ozone hole and global warming related ?

 By Rebecca LindseySeptember 14, 2010

The ozone hole and global warming are not the same thing, and neither is the main cause of the other.

The ozone hole is an area in the stratosphere above Antarctica where chlorine and bromine gases from human-produced chlorofluorocarbons (CFCs) and halons have destroyed ozone molecules.

Global warming is the rise in average global surface temperature caused primarily by the build-up of human-produced greenhouses gases, mostly carbon dioxide and methane, which trap heat in the lower levels of the atmosphere.

There are some connections between the two phenomena.

For example, the CFCs that destroy ozone are also potent greenhouse gases, though they are present in such small concentrations in the atmosphere (several hundred parts per trillion, compared to several hundred parts per million for carbon dioxide) that they are considered a minor player in greenhouse warming. CFCs account for about 13% of the total energy absorbed by human-produced greenhouse gases.

The ozone hole itself has a minor cooling effect (about 2 percent of the warming effect of greenhouses gases) because ozone in the stratosphere absorbs heat radiated to space by gases in a lower layer of Earth’s atmosphere (the upper troposphere). The loss of ozone means slightly more heat can escape into space from that region.

Global warming is also predicted to have a modest impact on the Antarctic ozone hole. The chlorine gases in the lower stratosphere interact with tiny cloud particles that form at extremely cold temperatures — below -80 degrees Celsius (-112 degrees Fahrenheit). While greenhouse gases absorb heat at a relatively low altitudes and warm the surface, they actually cool the stratosphere. Near the South Pole, this cooling of the stratosphere results in an increase in polar stratospheric clouds, increasing the efficiency of chlorine release into reactive forms that can rapidly deplete ozone.

  1. References:

  2. Allen, Jeannie. (2004, February 10). Tango in the Atmosphere: Ozone and Climate Change. Earth Observatory. Accessed: September 14, 2010.

  3. Baldwin, M.P., Dameris, M., Shepherd, T.G. (2007, June 15). How will the stratosphere affect climate change?Science, 316 (5831), 1576-1577.

  4. Intergovernmental Panel on Climate Change, (2007). Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge, United Kingdom, and New York, New York: Cambridge University Press.

  5. Ozone Hole Watch. Accessed: September 14, 2010.

WordPress.com.

Up ↑